o

Desktop Developer)

- Prepare for .NET 1.1
and Beyond

Maintain application compatibility and make your apps cope with

multiple .NET versions.

Technology Toolbox

o VB.NET

o Cc#

(1 SQL Server 2000
(1 ASP.NET

a XML

1 VB6

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Discuss

VS0212DT_D Discuss this article in
the .NET Framework/IDE forum.
Read More

VS0212DT_T Read this article
online.

VS0206QA_T Q&A, “Develop Rich-
Ul Apps,” by Karl E. Peterson and
Juval Lowy

VS0203DT_T Desktop Developer,
“Implement Versioning in .NET,” by
Bill Wagner

44

NET simplifies application deployment
] and versioning. Before NET, you were
probably often caught in DLL Hell: Deploying
a new version of an application with its class
libraries caused previous versions (and some-
times other applications) to stop functioning.
The .NET architects solved this problem with a
clear, deterministic set of ways an application
binds to a particular version of an assembly it
uses. However, if the other assemblies your app
uses are the .NET assemblies, different versions
of .NET itself can affect your apps. I'll give you
some ground rules you should know and the
actions you need to take to maintain application
compatibility and, if possible, take advantage of
new .NET versions (see the sidebar, “.NET
Versions Include Security Policies”).

NET provides two kinds of assemblies—
friendly-named assemblies and strongly named
assemblies. Friendly-named class library assem-

by Juval Lowy

blies typically reside in the directory of the
application using them. Strongly named assem-
blies contain their producer’s digital signature.
The digital signature is the product of public
and private encryption keys. Strongly named
assemblies usually reside in the Global Assembly
Cache (GAC). The GAC can contain multiple
versions of the same class library assembly.
Strongly named assemblies can also reside in the
application directory. Each assembly has an
assembly version number, provided as an assem-
bly attribute, such as:

[VB.NET]
<Assembly: AssemblyVersion("1.2.3.4")>

When the MyApp assembly references an-
other assembly—MyClassLibrary—that refer-
ence is recorded in the MyApp assembly’s mani-
fest. Which version of MyClassLibrary .NET

23 System, Web, Services

System.Design
& System,Drawing

C:?Systsm, Drawing
p:
<

] E3

Ble Action View Help] e |

My Computer Assembly Name | version | Locale | Public Key Token -]
@ Assembly Cache {3 system. ServiceProcess 1,0,3300.0 neutral b03fsF7f11d50a3a
U@ Configured Assemblies | 335, ctem web 1.1,5000.0 neutral bO3FSF7F11d50a3a
5] Remoting Services System.Web 1.0.3300.0 neutral bO3FSF7F11d50a3a
8 & Runtime Securky PAcY {1385 ctom. Web.RegulsrExpressions 1.1,5000.0 neutral bO3FSF7F11d50a3a
i B 1,0.3300,0 neutral bO3FSF7F11d50a3a
933 System.Web, Services 1,1,5000.0 neutral bO3f5F7F11dS0a3a

neutral b03fSF7f11d50a3a

neutral

1.0.3300.0

neutral

1,1.5000.0 b77a5¢5619342089

neutral

1.0.3300.0 neutral b77a5¢561934e089
1,1.5000.0 neutral b77a5¢561934e089
1,0.3300.0 neutral b77a5¢5619346089
1.1.5000.0 neutral bO3fSF7fF11d50a3a
1.0.3300.0 neutral b03fSF7f11d50a3a
1,1.5000.0 neutral b03f5f7f11d50a3a
1,0.3300.0

neutral bO3fsf7f11d50a3a

P

Figure 1 The GAC Supports Side-By-Side Execution. Every .NET version is deployed to the Global
Assembly Cache (GAC), which can contain multiple .NET versions. Here the GAC contains both ver-
sion 1.0 and version 1.1 of .NET, with version number 1.0.3300.0 and 1.1.5000.0, respectively, of the

System.Windows.Forms class library assembly.

VISUAL STUDIO MAGAZINE

DECEMBER 2002 + www.vi Istudic gazine.com

¥1,1,5000.0
v1.0.3300.0

X

Ta run this application, you first must install one of the following versions of the .Net Framework:

Contact your application publisher for instructions about obtaining the appropriate version of the .Net Framewark.

.NET Framework Initialization Error B

Figure 2 Install a Supported CLR Version. If an application specifies in its config file one or more CLR versions it supports, then .NET insists
only these versions be used. If none of the specified versions is installed on the machine, .NET refuses to load the application and informs the

user to install at least one supported CLR version.

uses depends on the kind of assembly MyClassLibrary is. If
MyClassLibrary has a friendly name only, .NET will use whatever
version of MyClassLibrary is found in the application directory,
regardless of its version. .NET also supports custom assembly
resolving options. In any case, when using friendly names only,
application administrators can deploy new versions of MyClass-
Library without recompiling MyApp, as long as the new version of
MyClassLibrary is backward compatible. .NET insists on a perfect
version match if MyClassLibrary has a strong name. .NET looks in
the GAC for a matching version of MyClassLibrary. If it finds a
matching version, .NET loads it. If it finds no compatible version
in the GAC, .NET looks in the application directory. Under no
circumstances will .NET load a strongly named assembly with a
different version number.

NET’s rigorous enforcement of version compatibility raises an
interesting problem: If an application is built against version 7 of
NET, the application won’t be able to take advantage of version
n+1 of NET (when it'savailable). The reason is that the application’s
manifest contains the version numbers of all assemblies it relies on,
including the Common Language Runtime (CLR) and application
frameworks. The .NET assemblies are strongly named, so the
assembly resolver (the .NET entity responsible for finding and
loading a compatible assembly) insists on a perfect version match.
To overcome the issue of version compatibility with its own
assemblies, NET providesa different set of ground rules from those
it uses with any other assembly. The issues involved are intricate.
The exact CLR version that components in a class library oran EXE
use can vary, depending on what they were compiled with, the
available .NET versions, and the application-versioning policy.

Even though the CLR and the various NET application frame-
works consist of manyassemblies, all are treated asa single versioning
unit. Multiple versions of these units can coexist on any given
machine. This is called CLR side-by-side execution.

Side-by-Side Execution Lets You Choose

Side-by-side execution is possible because .NET is deployed in the
GAC, and the GAC supports side-by-side execution of different
versions of the same assembly (see Figure 1). Because of CLR side-
by-side execution, different .NET applications can use different
versions of .NET simultaneously. It’s also possible to install new
versions of NET or remove existing versions. Side-by-side coexist-
ence reduces the likelihood of impacting one application when you
install another because the old application can still use the older
NET version (provided you take certain steps I’ll describe next).

1

DECEMBER 2002 + www.visualst: gazi

Nonetheless, CLR side-by-side execution allows you to choose
when you'll upgrade to the next NET version, rather than have the
latest installed version ordain the upgrade.

When you choose to take advantage of features available in a
newer .NET version but not in older ones, your components will no
longer be compatible with older versions. As a result, you must test
and certify your components against each .NET version and state
clearly in your product documentation which .NET versions are
supported. Next, you need to understand CLR version unification.
All .NET applications are hosted in an unmanaged process that
loads the CLR DLLs. That unmanaged process can use exactly one
version of the CLR assemblies. Not only that, but when you get a
particular version of the CLR, that also dictates which version of the
.NET application frameworks is used, because both the CLR and
the application framework’s assemblies are treated as a single
versioning unit. The fact that .NET always runs a unified stack of
framework assemblies is called version unification.

Unification is required because the CLR and the .NET applica-
tion frameworks aren’t designed for mix and match, with some
assemblies coming from version 7 and some from version 7+1. A
NET application usually contains a single EXE application assem-
bly, and potentially multiple class library assemblies. Unification
means that in a process containing a managed application, the EXE
application assembly, and the class libraries it loads, use the same
NET version. It’s up to the EXE to select the CLR and application

/.NET Versions Include Security Policies\

Changes to the CLR version number aren‘t the only differences in
new versions of .NET. Together with each version of the CLR
assemblies, .NET also ships access security policy configuration
files. These files contain the Enterprise, Machine, and User policies
and are stored in version-specific directories. For example, the
Enterprise policy file resides at < Windows Directory>\Microsoft. NET\
Framework\< Version>\config\enterprisesec.config, and the Ma-
chine policy file at <Windows Directory>\Microsoft.NET\Frame-
work\< Version>\config\security.config.

New versions of .NET might ship with different default secu-
rity configurations. These security configuration changes mean
that when you consider compatibility with a new .NET version,
you must take its security policy into account. You need to decide
whether that security policy is adequate, and if you think it isn't,
you need to provide your own security policy.

45

VISUAL STUDIO MAGAZINE

Desktop Developer M’

framework version to use. The class libraries have no say in the
matter. For example, all assemblies in the first NET release (NET
1.0) have the version number 1.0.3300.0. All assemblies in the
second .NET release (NET 1.1) have the version number 1.1.5000.0.

Imagine a machine that has both versions installed. When an
EXE assembly uses .NET version 1.1.5000.0, it’ll make all class
libraries it loads use 1.1.5000.0, even if they were compiled with
version 1.0.3300.0. If the EXE assembly selects version 1.0.3300.0,
then all the class libraries it loads will use version 1.0.3300.0, even
if they require the newer features of 1.1.5000.0. Because of unifica-
tion and side-by-side execution, it’s possible for one application to
use version 1.0.3300.0 and another application to use 1.1.5000.0 at
the same time, even if they interact with each other.

Any combination of CLR versions can reside on a given ma-
chine. Applications can rely implicitly on a default CLR version-
resolution policy, or they can provide explicit configuration indicat-
ing the supported CLR versions.

Specify Supported CLR Versions
If the application doesn’t indicate to .NET which CLR versions it
requires, then the application is actually telling .NET that any
compatible CLR version is allowed. In that case, NET detects the
CLR version the application was compiled with, and uses the latest
compatible CLR version on the machine. To that end, .NET is
aware of which CLR version is backward compatible with other
versions. (Currently, all newer versions are backward compatible).
The compatibility list is maintained in the Registry. Applications
that rely on this default policy are typically mainstream applications
thatuse the subset of typesand servicesall the CLR versions support.
Applications that take advantage of new features or types can’t use
the default policy, because they might be installed on machines with
only older versions of the CLR. Similarly, applications that use
features that are no longer supported can’t use the default policy.
The default version might cause applications to run against CLR
versions they weren’t tested for, resulting in undetermined behavior.
Applications that don’t wish to rely on the default version binding
policy, and would like to have deterministic behavior, can provide
explicit version configuration. In such cases, the application must
indicatein its configuration file which versions of the CLR it supports,
using the startup tag with the supportedRuntime attribute:

<?xml version="1.0"?7>
<configuration>
{startup>
<supportedRuntime version="v1.1.5000.0"/>
<supportedRuntime version="v1.0.3300.0"/>
{/startup>
</configuration>

The order in which the CLR versions are listed indicates priority.
.NET tries to provide the first CLR version to the application. If that
version isn’t available on the machine, .NET tries to use the next
version down the list, and so on. If none of the specified versions is
available, NET refuses to load the application. .NET presents a
message box, asking the user to install at least one of the supported
versions specified in the configuration file (see Figure 2). Note that
the startup directive overrides any default behavior .NET can
provide, meaning that even if another compatible version is avail-
able on the machine (but not listed in the configuration file), NET

46 VISUAL STUDIO MAGAZINE + DECEMBER 2002

refuses to run the application. Consequently, if an application lists
the supported CLR versions explicitly, it can’t be deployed on a
machine with a new version that’s not listed.

Typically, you can’t add a CLR version to the list without going
through a testing and verification cycle. The problem with the
supportedRuntime attribute is that only .NET 1.1 recognizes it.
Microsoft intends to provide a service pack for NET 1.0 thac'll add
the support for this tag. Until that fix is available, applications
developed with .NET 1.1 will have a problem if you deploy them
on a machine with .NET 1.0, because the supportedRuntime
attribute won’t be supported. However, NET 1.0 does support the
requiredRuntime attribute under the startup tag:

<{startup>
<requiredRuntime version="v1.0.3300.0"/>
</startup>

When the requiredRuntime attribute is specified, .NET uses the
specified CLR version number instead of the one the EXE was built
with. If the specified CLR version number isn’t available on the
machine, then .NET Jooks in the Registry for the newest available
compatible version and uses that one. You (or a system administra-
tor) can even instruct .NET not to look in the Registry by setting the
safemode attribute to true:

<startup>
<requiredRuntime version="v1.0.3300.0" safemode="true"/>
<{/startup>

In this case, .NET displays an error message and refuses to load
the application if the required CLR version isn’t available—even if
a compatible version is available. The safemode’s default value is
false. Once .NET 1.0 supports the supportedRuntime attribute,
then the requiredRuntime attribute will be considered deprecated
and shouldn’t be used.

The .NET architects tried to strike a balance between allowing
innovation and new versions on one hand, and supporting existing
applications on the other. Ultimately, it’s up to you to decide
whether you want your applications and components to support a
particular CLR version. This marks a change of philosophy—
Microsoft no longer guarantees absolute backward and forward
compatibility, because that would be impractical. Instead, it pledges
to make every effort to have newer .NET versions be backward
compatible and to point out incompatibilities. vsm

Juval Léwy is a software architect and principal of IDesign, a .NET
consulting and training company. He's also a Microsoft Regional
Director, the .NET California Bay Area User Group Program committee
chairman, and a conference speaker. This article derives from his
upcoming book on .NET components (O'Reilly). Contact Juval at
www.idesign.net.

Additional Resources
* Programming .NET Components by Juval Lowy [0'Reilly &
Assaciates, 2002, ISBN: 0596003471]

* “End DLL Hell with .NET Version Control and Code Sharing”
by Juval Lowy: www.devx.com/codemag/articles/2002/
julyaug/enddllhell/codemag-1.asp

+ www.visualstudiomagazine.com

Access COM Clients

From .NET Objects

Access COM clients from .NET components, program against the thread pool, and use
the system'’s File Properties dialog.

Technology Toolbox

J VB.NET

o C#

(1 SOL Server 2000
J ASP.NET

XML

o VB6

™ Note: Karl E. Peterson’s solution
also works with VB5.

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS02120QA Download the code for
this article, including the
ThreadPool project, which allows
the user to queue requests for the
thread pool; and a drop-in-ready
module containing code that brings
up any file’s Properties dialog.
Discuss

VS02120A_D Discuss this article in
the .NET forum.

Read More
VS0212QA_T Read this article
online.

VSEP011204RH_T “Boast Web
Power With ASP.NET” by Rob
Howard

VS0209BB_T Black Belt, “Sync
Threads Automatically,” by Juval
Lowy

VS0205RT_T “Invoke Asynchronous
Magic” by Robert Teixeira

48

e Use .NET Components
With COM Clients
Does .NET use COM apartments? If not, why
do I see the single-threaded apartment (STA)
attribute on new Windows Forms applications?

A:

NET does not have an equivalent to COM’s
apartments. Unlike COM, every .NET compo-
nent resides in a free-threaded environment, and
it’s up to you to provide proper synchronization
(see Figure 1). The question is, what threading
modelshould.NET components present to COM
when interoperating with COM components as
aclient? COM needs to take the client’s threading
model into account when deciding on the exact
apartment of the COM server object. The Thread
class has a property called ApartmentState of the
enum type ApartmentState:

public enum ApartmentState
{

STA,

MTA,

Unknown

By default, the Thread class’s ApartmentState
property is set to ApartmentState.Unknown.
You can instruct NET programmatically which
apartment to present to COM. Simply set the
value of the thread’s ApartmentState property to
cither ApartmentState.STA or Apartment-
State. MTA (but not to ApartmentState.-
Unknown):

Thread currentThread;
currentThread = Thread.CurrentThread;

VISUAL STUDIO MAGAZINE

by Juval Lowy and Karl E. Peterson

currentThread.ApartmentState =
ApartmentState.STA;

You can even set the threading model before the
thread starts to run:

//Some thread method
void ThreadMethod(){...}

ThreadStart threadStart;
threadStart = new
ThreadStart(ThreadMethod);
Thread workerThread = new
Thread(threadStart);
currentThread.ApartmentState =
ApartmentState.STA;
workerThread.Start();

You can also use either the STAThread or the
MTAThread method attributes to set the apart-
ment state declaratively. Although the compiler
doesn’t enforce that, you should only apply
these attributes to the Main() method:

[STAThread]
static void Main()
L)

Use programmatic settings for your worker
threads. The Windows Forms application wiz-
ard applies the [STAThread] attribute auto-
matically to the Main() method of a Windows
Formsapplication. This in done for two reasons.
First, you need the attribute applied in the event
of the application hosting ActiveX controls,
which are STA objects by definition. Second,
you need the attribute applied for when the
Windows Forms application interacts with the

DECEMBER 2002 -« www.visualstudi gazine.com

e COMWoﬂdg‘f~) Managed World
. @-—) Interop : (7 .
com Proxy] e . Gilent |
wrapper e
Apartment o
k / & 4

Figure 1 Masquerade COM Apartments. COM objects require apartments to manage concurrency and activation. However, .NET has no
use for them. The interop layer converts a managed call to a COM call, and in the process, conveys a synthetic apartment model to COM that

you can set, just as if your .NET client were a COM client.

clipboard, which still uses COM interop.

When you apply the [STAThread] attribute, the underlying
physical thread uses Olelnitialize() instead of ColnitializeEx() to set
up the apartment model. Olelnitialize() automatically does addi-
tional initialization required for enabling drag-and-drop.

You’ll experience one side effect when you select an apartment-
threading model: You cannot call WaitHandle.WaitAll() from a
thread whose apartment state is set to ApartmentState.STA. If you
do, .NET throws an exception of type NotSupportedException.
The underlying implementation of WaitHandle. WaitAll() uses the
Win32 call WaitForMultipleObjects(), and that call blocks the STA
thread from pumping COM calls in the form of messages to the
COM objects. —/.L.

Q: Use the System’s File

Properties Dialog
My application offers a display of filenames as part of its user
interface. I'd like to give users the ability to bring up the system File
Properties dialog as one of the options when they right-click on a
filename. How can I do that?

A:

This task involves only a single quick call to the ShellExecuteEx API
(see Listing 1). Unlike ShellExecute, ShellExecuteEx enables you to
call any context menu item related to a given shell object—
“properties,” in this case.

Set up the call by creatinga SHELLEXECUTEINEFO structure
and filling its first element (cbSize) with the structure’s overall size
so the system knows that you know what you're doing. Create the
flag mask by combining the constant values for SEE_ MASK_
INVOKEIDLIST (which allows the use of shortcut menu exten-
sion verbs, rather than only Registry verbs), SEE_MASK_
FLAG_NO_UI (which prevents the system from popping message
boxes on errors), and SEE_MASK_DOENVSUBST (which ex-
pands environment variables in the passed filespec).

It’s good form to stuff the structure’s hWnd element with the
handle of a window in your app. This window serves as the parent
of any error-related message boxes the system pops up, although
you’ve instructed the system already not to do this. The IpVerb
element is the key to bringing up the desired dialog—assign

VISUAL STUDIO MAGAZINE + DECEMBER 2002

+ www.visualstudiomagazine.com

“properties” to this element. Finally, assign the desired filename to
the IpFile element, and make the call to ShellExecuteEx.

You can gauge your call’s success by examining the SHELL-
EXECUTEINFO structure’s hInstApp element for a value greater
than 32. Values less than 32 indicate an error occurred, and you can
interpret the exact cause from the specific value. —K E.P.

Q: Program Against the Thread Pool

I read that .NET uses a thread pool under the hood for tasks such
as asynchronous method calls. Is there a way I can program against
that pool directly? This will save me the trouble of managing my
own threads.

A:

You can program directly against the thread pool. Creating worker
threads and managing their lifecycle gives you ultimate control over
these threads. Italso increases your application’s overall complexity.
If you only need to dispatch a unit of work to a worker thread, then
you can take advantage of a.NET-provided thread from the thread
pool instead of creating a thread. .NET manages the thread pool,
and the pool has a set of threads ready to serve application requests.
NET makes extensive use of the thread pool itself, not only for
asynchronous calls, but also for timers and remote calls. You access
the .NET thread pool through the ThreadPool class’s static meth-
ods. Using the thread pool is simple. First, create a delegate of type
WaitCallback, targeting a method with a matching signature:

public delegate void WaitCallback
(object state);

Then, provide the delegate to one of the ThreadPool class’ static
methods—typically, QueueUserWorkItem():

public sealed class Threading.ThreadPool
{
public static bool
QueueUserWorkItem(WaitCallback
callBack);
/* Other methods */
}

49

VBS5, VB6 * Show the System File Properties Dialog

Option Explicit

Private Declare Function ShellExecuteEx Lib _
"shel132.d11" Alias "ShellExecuteExA" _
(TpExecInfo As SHELLEXECUTEINFO) As Long

' ShellExecuteEx flags

Private Const SEE_MASK_INVOKEIDLIST = &HC
Private Const SEE_MASK_NOCLOSEPROCESS = &H40
Private Const SEE_MASK_DOENVSUBST = &H200
Private Const SEE_MASK_FLAG_NO_UI = &H400

' ShellExecuteEx parameters
Private Type SHELLEXECUTEINFO
chSize As Long
fMask As Long
hWnd As Long
IpVerb As String
1pFile As String
1pParameters As String
IpDirectory As String
nShow As Long
hInstApp As Long
' Optional fields
1pIDList As Long
TpClass As String

hkeyClass As Long

dwHotKey As Long

hIcon As Long

hProcess As Long
End Type

Public Function ShowFilePropertiesDialog(ByVal _
FileSpec As String, ByVal hWndMsgOwner As _
Long) As Boolean
Dim sei As SHELLEXECUTEINFO

With sei
.chSize = Len(sei)
.fMask = SEE_MASK_INVOKEIDLIST _
Or SEE_MASK_FLAG_NO_UI _
Or SEE_MASK_DOENVSUBST
.hWnd = hWndMsgOwner
.1pVerb = "properties"
.1pFile = FileSpec
End With
Call ShellExecuteEx(sei)
' An "instance handle" is always greater than
' 32. An error value from this call is always
" less than 32
ShowFilePropertiesDialog =
End Function

(sei.hInstApp > 32)

Listing 1 Enter this code into a standalone BAS module, and you have a drop-in—ready solution for displaying the system File Properties
dialog. Simply pass the ShowFilePropertiesDialog procedure the filename you'd like to have displayed, and the handle for an owner form
should the system decide it needs to display a message box (which is unlikely).

As the method name implies, dispatching a work unit to the thread
pool is subject to pool limitations. This means that if no available
threads exist in the pool, .NET queues the work unit and serves it
only when aworker thread returns to the pool. .NET serves pending
requests in order. Use the thread pool like this:

void ThreadPoolCallback(object state)
{
Thread currentThread =
Thread.CurrentThread;
Debug.Assert(currentThread.
IsThreadPoolThread);
int threadID =
currentThread.GetHashCode();
Trace.WriteLine("Called on thread "
"wisth < DD " 4
threadID.ToString());

WaitCallback callBack = new
WaitCallback(ThreadPoolCallback);
ThreadPool.QueueUserWorkItem(callBack);

For diagnostic purposes, you can find out whether the thread your
code runs on originated from the thread pool using the Thread
class’s IsThreadPool Thread property.

A second overloaded version of QueueUserWorkItem() allows
you to pass in an identifier to the callback method in the form of a
generic object:

public static bool QueueUserWorkItem(
WaitCallback callBack,object state);

50 VISUAL STUDIO MAGAZINE -«

You pass in the identifier as a single parameter to the callback
method. If you don’t provide such a parameter, NET passes in null.
The identifier enables the same callback method to handle multiple
posted requests, while at the same time being able to distinguish
between them.

The ThreadPool class supports several other useful ways of
queuing a work unit. The RegisterWaitForSingleObject() method
allows you to provide a waitable handle as a parameter. The thread
from the thread pool waits on the handle, and only calls the callback
once the handle is signaled. You can also specify a timeout to wait
for. The GetAvailableThreads() method allows you to find out how
many threads are available in the pool, and the GetMaxThreads()
returns the pool’s maximum size. —/.L.

Juval Léwy is a software architect and principal of IDesign, a
consulting and training company focused on .NET design and migra-
tion. Juvalis a Microsoft Regional Director for Silicon Valley, the author
of Programming .NET Components (O'Reilly & Associates), and he
speaks at software development conferences. Contact him at
www.idesign.net.

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of the VSM Technical
Review and Editorial Advisory Boards. Online, he's a Microsoft MVP
and a section leader on several DevX forums. Find more of Karl's VB
samples at www.mvps.org/vb.

Additional Resources

“HOWTO: Set the COM Apartment Type in Managed Threads”:
http://support.microsoft.com/default.aspx?scid=kb;
en-us;q318402&

DECEMBER 2002 -+ www.visualstudiomagazine.com

